POWER GENERATION EXPLORING SASKATCHEWAN'S NUCLEAR FUTURE

Presented to the SARM and U of R Forum January 18, 2006

H-SagkPower

- Integrating large generators into SaskPower's system
- Two levels of concern
 - Impact on the local transmission system
 - Impact on interconnected operation with other transmission systems

H SaskPower

- Impact on the local transmission system
- A nuclear unit in the context of SaskPower's system
 - SaskPower's peak system load is 2954 MW (2004)
 - SaskPower's minimum system load drops to about 1500 MW
 - SaskPower's biggest unit is ~ 300 MW
 - Current round of economical nuclear unit sizes are > 1000 MW
 - One nuclear unit is greater than all of SaskPower's coal-fired generation located in Estevan area (7 units)

H SeskPower

- Impact on the local transmission system
 - No single load center in Sask. equivalent to current nuclear unit size (especially at light load) require multiple new lines to multiple delivery points and upgrades to existing transmission
 - 230 kV currently max line voltage in Sask. 1000+ MW would require $\sim 6-230$ kV lines.
 - Routing and cost issues with 6 230 kV circuits may precipitate move to 345 kV or 500 kV for a green-field nuclear site
 - Will add significant operating cost because of requirement to maintain contingency generating reserve equal to largest unit

H: SaskPowar

Generation Integration Issues

Impact on the interconnected transmission system

SaskPower synchronously integrated with Manitoba,
 North Dakota and all of eastern
 North America

Th. Szak Powar

- Impact on the interconnected system
 - When a SP unit trips, 99 % of lost power instantly comes in over the interconnections
 - System and interconnections sized to withstand loss of largest SP unit (~300 MW) without service disruption

H Sask Power

Generation Integration Issues

Impact on the interconnected system

• Nuclear unit 300+ % larger than SP's largest

• Require 300+ % increase in interconnection capability to accommodate loss of nuclear unit

• Reenforcement requirements ripple through northern MRO

• Likely require new 500 kV transmission for interconnection reenforcement (\$ 0.7 B)

- Two possible options:
 - Unit integrated into Sask. System with partial sales to external market
 - Unit located in Sask. but isolated from Sask. system.
 Dedicated transmission to external markets.

- Mixed domestic supply & external sales option
 - Still have to deal with all of the issues associated with integrating unit into Sask. transmission system
 - Local transmission reenforcement
 - Reenforcement of interconnections to facilitate loss of unit
 - Depending on how much is being sold to external market, <u>may</u> require interconnection reenforcement beyond what is required to just address loss of unit
 - Additional transmission costs if market is not within MRO

- Build for export only
 - Utilize High Voltage Direct Current (HVDC) transmission to connect to external markets
 - HVDC provides lowest cost and operational flexibility for distances and power levels under consideration
 - Build for export only avoids local transmission problems

H-SaskPower

14 SaskPower

Cost of Transmission for Export

